/ / /
(Allium cepa L.)”& ’”% !”#$%
* +, +
’45 * 3 & * -./ 0 1 2
(//: / / 🙂
’”76
723900819908

8> #”.2 B, : ;5 0 @ . A ?2 ? > = .” ’ ’<% ! : ;5 9 8 32 + J , + J J >3″I < “& $5 ’”% H , + 3″5 -“”E% G0E F5 – D’> .’> 5 O JP + – “& NN 2 % “M0 L 0 ’ / 1 >05 8 & GD’> – 0 B K;50 . * J J ! 0 + ? A .’ I: H T , B? S >5 6 0 6 Q R 0 > 8 & .’’
0J Z5 +I %V/W 0”. X 0 Z5 -%NT/ ’/ . X> @5 UVW* +, + “& ’”%
J J ] J, .’5I B 0 X> M #” WW G”I B$% \ 35 “&X# [ -“@ “5 . +”
JH, BS. . / 0 H , BS. G@5 M #” T/WV X> @5 U_UV ^”% % 0
’R /W .’ . > ’”% 8 32 “& ’”% : ;5 ?2 9 0 ’> 5 + ? = .”- -” & 0 ’J ’<% ! “a G+I ’R WW/ ( 25 ‘ “I OI G 5 G . “) ’ ’<% ! G !
X> d ’”% >0; 3> ! 0 + ? >0; 3> 3″I .(0 “. X G” “> G!”cM B, GQbI-“5)
+ J, + J J”& ’J”% 0J6 M – ; .’5I B0/_N G= .”- 0; 3> 0 ’ 2 BS. . W_TU G “& ’”%
.BS ! K 5 ;” & *
H, G G +g” : ’”#e>

!”# $% &”’ ( “) *”’ .
fa_ha140@stu.um.ac.ir :$*3’ 2*0 . 1/ *#+,-.# : *
( 6 B2. 3% 7 9 $ X 5 ( (a ’ R30 ’H ^ ? A4<# C4 A >>8 30, A %3% ( 9 ( “8
7 4b (a 4’ i O4# I49Q2# 1 4k 748 4% $# B6
.() > K’ $% 9 +,Od# G 30, ( O2J
430, (a 4’ A;349 $48 7>3# (1e0W#
. 4% 742 1 ,4b A!X % % (“8 1_,Od# ,4X (\) $49H Bf > (a ’ $8 A +T# A,> 79
35 () $>3# M3% (]) ,% (Y) RN8 () 1 l ( )
([) (,438 () M34% () (74’mN $&’ 7X,
$!X,4 I9J 1Q3Qd 3,# # 72 J $% 9 ,#
G 43’ 43 430, (a ’ $8 (Z) ,# .% “’ fn’ 30, B2.3% 9 AH 7.Q# (8 ( 3’ :2% 9 $2. :24% 748 7n32’ ,K’ $% 9 <# R3’<# cR4 4<NK 4!> 74’ 3 30, (8 ( 3’
G4 4? $N3.4 (46 5,4% i O4# c68 M/% 7<N9
. $# S,.d# 30, B2.3%
( 79 $X 5 ( (a ’ C33e o3Qd C i 6 $4% 9 (a 4’ i O4# $ 8 7/%d# 3 30, 2<6 G (46 I43Nd 7Rn C3>@ B6 ( (a ’ pN2m# +<? .,9 (,U A% 5 A2% 3 30, ( O2J
>L 5
q 9 (,U A% 5 A2% 3 7 R# YY 7e0W#C $J 4? Y ] $ 43 rX +,h $0K? ] \ $ 3 rX A24% C D.# . fn’ VW% 2# s:
Y[[43 “48 (6 C3# VW% P9 # 2#,N38 \Z [
4 (46 C3# 2<6 /\ZC3# ’ ^%,2# .%2<6 74QW># ( “48 (46C34# I48 b [/ 3 “8 A4 74QW># 4? “8 3 $Nb fJ . ?$#I#?
1 l $4&’ 7X, 7QW># $ 1_,Od# % .,9 A N
74#’c4% 749 14 ;h ( H PKX . ’ ,9 ,X f > 4D 748 [ +4% 43 A >>8 30, !@ 79 !@
05’45
748 Alliaceae ,’45 % $63 (Allium cepa L.) 3
$4< 4= $>4?@ A,4> 749 $8 ,45 :24% 9 ;
,49C3EF% ,:0,% 1/38 (D $ A63C B!#
C3 4 G43,39 $42’H I43/J ( K”39 $’# L,5 (
. ?9 $ # C3 ? MNO P’ # A, 5 + 2. N8 ’ H +!4% 7 4% $ ,5# 4% !24? A 4Q A# C3>@ B6
$D,4’ AH “4># 43 $# J :2% ,# 9 ( 2’R
.( ) % 7’3# 5 7’ 2 # S = A 4 (6 !4? T8 UD +D ,9 A $#,9 3
/Y 4D A4!X 43 “4) VW% .( ) ,? $# “8 C4 ?9$# 2*6 R6 Z D A 2*6 A,3N3#
A 4 [[\Y kg/ha AH$ ’4!X 4*NK 74) % $0D 49 43C ( %N79C 9>9 .(]) % \]\ kg/ha ^4%,2# 79 /.’ AH (_9 <NK A $,6 SH^?
AH A 4 ,4‘># 4>@ :24% I30 79C3>@B6 $’!X
. % $# ‘’ 79( U3 30, A ( “48 $N4b (R4X $4< (a 4’ #H 8 :2% c R4 49 ( “48 (a 4’ :24% .([) 4% $4:38 VW% c R “8 I9J (6 C3# d# 3eKX
M/4% 4= 30, c R 79 f /# 3’ .(\) 9 $# c R $ ’
1_H C34?# 46 c48 4H $ 3K3? (6 ,8 :2% c R
:24% & (,% . % ? (a ’ P9># & ( “8
(46 B2.43% 749 ( (46 4!’ A,4> 79 P9> #C ?
$’4&K6 ? !9 ( 9 (R3#H ! 1;<“# M/% ( “8 $ = P9># 30, (a ’ $ 8 c R .,? $# . ^3d#
430, B2.43% G4 A,> 79 ( “8 g $
$4e3/hP94># + c648 $4W3d# .4 1;<“#
.([Z) ?9 $# 7 b 79 A Q# ,K’ ( 3 ,NX
435 (6+ % A C3>@B6 A!X (a ’ i O#
( 2″439(a 4’ A”48 j35 cR 79 ’
C4 .( ) 4’ 3 $4# 48749 $= 1_,Od# 30, !X
(a 4’ (Specific energy)L,O4m# (a ’ (productivity
.( ) ? 7/%d# (Net energy)x05
3 <NK ( (6 (a ’ I#? 730 1 ;h
. 4 R304’H +Q2’ Excel R f ’ 79 6 7#’c%
I48 ( + X) $X 5 ( (a ’ (6+ e# (>/# 9
$ 48 4 (a ’ /.’ 2<6 $X 5 ( (a ’
(a 44’ ( 44!9 (Energy use efficiency)(a 44’ i O44#
(Specific energy)L,O4m# (a ’ (Energy productivity) .( ) ?7/%d# (Net energy)x05 (a ’ (a ’ i O# $8 = (MJha-1) $X 5 (a’ -(MJha-1) ( (a ’ [ ]
(a ’ ( !9 = (kgha-1) 3 <NK -(MJha-1) ( (a ’ [ ]
L,Om# (a ’ =(MJha-1) ( (a ’ -(kgha-1) 3 <NK
[Z]
x05 za ’ = (MJha-1) |X 5 za ’ { (MJha-1) z za ’
[Y]
SH I43E 5,4% $’.4’ ( 43’ I#4? B3Q2.4# (a ’
1_H C34?# I#4? B3Q2.4# 3= (a 4’ 723.4 2<0 ( 39H I4 c48 p4N ) f,K4% $# ,8 (NPK) $ 3K3? (6 ,8 t34% A,> 4 1,423K c8 “D I , +28
430, ( 9 ? i b (a ’ (B >9 8 I3#,>9c8 } J
$# ,8 $’.’ ( 3 ’I#? n I9J(6 (a ’ .,9 9 I#4? 4 n I49J 3=(6(a ’ $O# 9 ( 39H SH f,K44% $ 3K344? (446 ,8 I443E 5,44% 1_HC344?# .( Y Z) ,9 723.2<0 $ 3K3? “4 9 4? $94 43 30, ( O2J (6 I3Nd
(Net return)x0 5 ” 9 (Gross return)x0 5’ ( O 2J (Benefit to cost ratio)7 >R6 7 9 /. ’ 30, 3r2# 7>R6 o : x05’ ” 9 . 7/%d# x05 ” 9 .( ) 7/%d# 30, x05’ 2<6 30, x05’ 30, 7>R6 I8 o : I48 749 30, x05’ B3.Q 7>R6 79 /.’ .( \) 44#H 44% 7 449 442<6 4430, 7 44>R6 4d ? Sm2’ (6 C3# $#K . ? fn’ ’ ,9 :’ ][[
% C3>@B6 . >2? J ( 39H d ,9 $Om? 3<0#
A24% ( “8 !X A# % $% 9 C f _ 1 ;h
74#’c4% I43K< ,‘>#79 . ( H (,U A% 5
( 7ND # %$ O ( 3 7’,K’ ? $D h ( 43 74’,K’ C . ? :2% A2% A 8 3 I8 C39
4 49 AH g 42’ 4% ( 3 7’,K’ C A%H PJ
. 4% 7e#X I8 79 B3Ke I9J K2 I9J ( 3 7’,K’ +,b
: C33e 70 e# o/h 7’,K’ e
29260875863

n =N⋅2s+2⋅(st22⋅ t2)[ ]
(N -1)d
43eKX I8 e N3’ ,# 7’,K’ e n +,# C
7e#X 7e0W# ,# :b t’ H 9 s2 . ?9$# i 6 (a 4’ $ 48 o43Qd C4 74e0W# ,4# :4b 78 % t + 4X 4‘’ ,4# :4b A ,49 +# ’ q 9 t . ?9 $# d 4H $4# 4% 79 ( /]) %YA>3Kh VW% ’ ,32% %Y %YA4>3Kh VW4% AH 4Q# 748 I9J (W5 (8 3) 7’,K’ e w, 70 e#v%9 .(] [) ?9 $# 4!X 78 #H %79 :’ Y /[Z 7#’c% I3K< !X f _ c R4 48 3 4:’ YY749 B4J C4 1/%d# J c R
.
( (a 4’ /.’ ^%, 3 30, s R# (a ’ $8
(446 ,8 I443E 5,44% 1_HC344?# $’.44’ ( 443’) 9 723.4 2<0 ( 39H SH f,K4% $# ,48 $ 3K34?
) 4 7/%d# (3 +,Od# <NK ) $X 5 ($ O#
46( a 4’ C4 + 4e# $4X 5 ( (6 (a ’ .([
14 ;h . 4% ? A”’ + X + a&# M.D 9
79 6 7#’ c% 3 <NK ( (6 (a ’ I#? 730
(46+ 4 e# (>/# 9 . R30’H +Q2’ Excel R f ’
( (a ’ I 8 ( + X) $ X 5 ( (a ’ i O44# $ 448 44 (a 44’ /.44’ 442<6 $44X 5
Energy )(a ’ ( !9 (Energy use efficiency)(a ’
? Qb $5 ’”% H, E5 . ’H
( D ) 1Om”#
Particulars (unit) ( D /+ a&#) (a ’ + e#
Energy equivalent (MJ unit-1) P/># Reference
6( {
1- Inputs
(%) $’.’ ( 3’{ { 1.96 Pishgar Komleh et al., 2011
1-1- Human labor (h)
(%) 1_HC3?# { { 62.7 Ghorbani et al., 2011
1-2- Machinery (h)
(230) I3E 5,% { { 50.2 Ghorbani et al., 2011
1-3- Diesel fuel (L)
(f ,N38) $ 3K3?(6 ,8 {Z{
1-4- Chemical fertilizers (kg)
Aa 23’{ {Z{ 66.1 Mohammadi et al., 2010
1-4-1- Nitrogen (N)
:. { {Z{ 12.4 Mohammadi et al., 2010
1-4-2- Phosphate (P2O5) B3%2 { {Z{ 11.2 Mohammadi et al., 2010
1-4-3- Potassium (K2O)
(C ) $# ,8{Y{ 303 Esengun et al., 2007
1-5- Manure (t) (f ,N38) f,K% {]{ 1-6- Chemicals (kg) c<:N { {]{ 238 Esengun et al., 2007
1-6-1- Herbicide c8″D { {]{ 101 Esengun et al., 2007
1-6-2- Insecticide c8} J { {]{ 216 Esengun et al., 2007
1-6-3- Fungicide
(Me<# 2#) ( 39HSH { {
1-7- Water for irrigation (m3) 1.02 Ghorbani et al., 2011
(% 1 ,N38) 723.2<0 {\{ 3.60 Ghorbani et al., 2011
1-8- Electricity (kWh)
(f ,N38) $O# 9 { { 14.7 Ozkan et al., 2004
1-9- Seeds (onion) (kg)
$X 5 {
2- Output
(f ,N38) (A) 3 <NK { {
(fresh weight) (kg) 2-1- Onion Yield 1.60 Ozkan et al., 2004
Z
“& ’” % ’5 Q “# [ . ’H
13NK /6 ,3?
Practices/operations 3 30, Onion production
BJ f’
Name of varieties A N A
Zarfam, Golden
\YC%, $.# ,28 ^%, C3# ( % #H 13NK
285 MF 75 hp Land preparation tractor used: $”8 70# $’ G. o3K Bm?
Moldboard plow, disc harrows, land leveler
C3# (% #H A#
Land preparation period >:% {CK!9 February – March
Bm? 1e e ^%,2# 2.4
Average tilling number
?8 A#
Planting period C { >:%
March – April
(?8 I/J) $6 ,8 A# planting) Fertilization period (Before >:% – A9H
November – March
(?8 e9) $6 ,8 A#
dressing) Fertilization period (Top 5 – >:%
March – June
$6 ,8 1e e ^%,2# 4.6
Average number of fertilization
( 39H A#
Irrigation period !# – C
April – October
( 39H 1e e ^%,2# 18.2
Average number of irrigation
(c8} J c8 H c8 pN ) $? B% A#
Spraying period (Herbicide, pesticide & Fungicide) !# – C
April – October
$? B% 1e e ^%,2# 6.2
Average number of spraying
? 9 A#
Harvesting period A9H – !#
October – November
.,49 Z/] (?8 e9 I/J) $6 ,8 1e e ^%,2# (s,4’ :. ,8 I<? 79 :2% ,# 7’a 23’ ,8 1:0,4% B34%2 ,8 IF1:. ,% 1:. f,3’,#H
(46 4# 74/ # \/4?8 4e9 ( 439H .,9 B3%2
:24% I#? $? B%13NK .,?$#fn’ !# C
f4n’ # !# C c8} J c8 H c8 pN
.( + X) ,9 ]/ $? B%1e e ^%,2# 3 $#
“& ’” % H, !”#$%
42<6 G4 ( (a 4’ I48 A”’ $% 9 C g 2’ 49 723.4 2<0 AR43# C4 748 ,49 + a4&#\Z 9 9 9 I448 (%Y[/ ) ( (a 44’ C 2″4439 + a44&# Y[[
Y
i$ A
“& B? Q “# [ -“5 Q P?5 Bm4? 43 430, $2 4# 13 NK e^%,2# A# 74E + 4X +,O4d# 4? 9 4 9 2.9 (% #H (46 4# $4h 49 2.49 (% #H Bm? .%
49 \Y C4%, $.4# ,428 ^4%, 4T8 >:% CK!9 >:4% 49 4?8 .,4?$#fn’ m9 M% Y 1 J A9H ?8 I/J $6 ,8 . 3 $#fn’ # C I
$2 4# 143NK 4% . 4$#1 ,b # >:% #
1 43NK 724? 74# 4# 4!# # >:% ? 7ND # A4# . 43 $4#f4n’ A49H 4!# (46 4# $ h ? 9 . 4#n’$4#+,4h 749 5 >:% ?8 e9 $6 ,8 C3 9 . 4? i O4# 74QW># o 3K ( 6 @ SHa FK
I48 %[/ 49 $ O4# 49 B2.43% 79( (6 (a ’
4<NK C3&’43# . 4? AR43# C 2K8 ( (6( a ’
$4X 5 (a 4’ I48 ,49 2<6 f ,N38 3
. #H %79+ a&# ]Z3 30, 2<6 G
“& $5 ’”% H, -“Z S% D5 . ’H (a ’ Energy VW% D 79 Q#
(2<6/ Q#)
Quantity per unit area (quantity ha-1) (a ’ + e# ( D /+ a&#)
Energy equivalent (MJ unit-1) (a ’ + e# I8 (2<6/+ a&#)
Total energy equivalent (MJ ha-1) (a ’ I8 b
(%) (
Percentage of total energy input (%)
6( {
1- Inputs
(%) $’.’ ( 3’
Human labor (h) 1694 1.96 3320 3.37
(%) 1_HC3?#
Machinery (h) 7.43 62.7 466 0.47
(230) I3E 5,%
Diesel fuel (L) 127 50.2 6393 6.49
(f ,N38) Aa 23’ Nitrogen (N)(kg) 219 66.1 14483 14.7
(f ,N38) :.
Phosphate (P2O5)(kg) 183 12.4 2279 2.31
(f ,N38) B3%2
Potassium (K2O)(kg) 109 11.2 1213 1.23
(C ) $# ,8
Manure (t) 22.1 303 6704 6.81
(f ,N38) c8pN Herbicide (kg) 2.02 238 481 0.49
(f ,N38) c8 “D
Insecticide (kg) 3.55 101 360 0.37
(f ,N38) c8 } J
Fungicide (kg) 1.63 216 351 0.36
(Me<# 2#) ( 39H SH
Water for irrigation (m3) 11935 1.02 12174 12.4
(% 1 ,N38) 723.2<0
Electricity (kWh) 13915 3.60 50092 50.9
(f ,N38) $O# 9
Seeds (onion) (kg) 11.1 14.7 163 0.17
(+ a&#) ( (a ’ I8
Total energy input (MJ) 98479 100
$X 5 {
2- Output
(f ,N38) (A) 3 <NK
(fresh weight) (kg) Onion Yield 73227 1.60 117164 (+ a&#) $X 5 (a ’ I8
Total energy output (MJ) 117164 (a ’ $8
Energy efficiency 1.19 , 8 AH e9 ( + X)? ( ( 6( a ’
(%]/\ ) $ # ,8 (% /Z) ( 39H SH (Z/ ) Aa 23’ I443E 5,44% . 44? 44J (%]/Z ) I443E 5,44%
SHa4FK ,28 5,% ,9 1 / 3 30, $ O#
(49 2″439723.2<0 (a ’ IQ’ IKD 6 @ $ e9
]
“&$5 ’”% H, BS. .V ’H
A,> Items D
Unit 3
onion
( (a ’
Energy input 2<6/+ a&#-1
MJ ha 98479
$X 5 (a ’
Energy output 2<6/+ a&#-1
MJ ha 117164
(A) <NK
(fresh weight) Yield 2<6/f ,N-1 38 kg ha 73227
(a ’ i O# $8
Energy use efficiency { 1.19
(a ’ ( !9
Energy productivity + a&#/f ,N38 kg MJ-1 0.74
L,Om# (a ’
Specific energy C /+ a&#
MJ ton-1 1345
x05 (a ’
Net energy 2<6/+ a&#-1
MJ ha 18684
( ) 1 l ( ) ,4X (\) f > >’#,”8 $ 1_,Od# 1_,O4d# 749 /.’ # ,9 _9 ( ) $>3# M3% (Y) RN8 cR4I430 749$4&’ 74X, ( ) 43 5 4>’#( 7’mN ( ) 74’mN (46 B2.43% ( (a 4’ c68 <NK x0 5 (a ’ L,O m# (a ’ C3&’ 3# . , 9 C3
[ – [[]( 6 + % A( ” 8( 6 B2. 3%
42<6 + a4&# Z ]f ,N38 + a&# /] M3 79
.( ) #H % 79 B3Q2.4# +<4? 749 ( (a 4’ I8 P , Y + X
+,O4d# 430, 4 n I49J 3= n I9J B3Q2.# 3= B3Q2.4#I<? 79( (a ’ P/># B!% . % ? H 3 (a 4’ P4/># B!% ,9 (%]/ ) B3Q2.# 3= 2″39 (% / )
9( i;25 (%/ ) ’ n (%/ ) n
A% 5 A2% 3 +,Od# 30, C 9>9 >2? & <
49 9 /Y D ’ n ( (a ’ P9># B!% (,U
430, ,4# .,49 4 n ( (a 4’ P9># 2″39
4? 4 $!9″4# ’ A ( “8 1_,O d# % (a 44’ 44K K.44J 7448 $ 44n’H .(Y) 44%
:244% ,449 Aa 4423’ ,448 723.44 2<0 44 ’ n A24% (46@ SH+Od2% !X n (6 (a ’ i O4# c648 (24% 6 @ SH( 9 !9 # 7X, 9 .(Z+ X) ,9 / 3 30, (a ’ i O# $ 8
74QW># $>3# SH (6 :% A ,9 C3 SH ,/K8 79 ( 49 723.4 2<0 (a ’ i O# AH P/ 79 7e0W# ,# c648 4!X $ 3!K $2. 9 6@ SH( 9 !9 430, AH i O4# P4 , $ 48 c R SH i O#
( 4 49 ;4 o4 h C 3 fn’ 3 +,Od# SH 723. 2<0 ( (a ’ $ >3# SH ( 6 : %
(a 4’ i O4# $ 48 74n32’ c68 B2.3% 79 ( 39H o43J 9 48 49 4K6 ( 439H $ 48 ,4/!9 . 9 c R $ 48 c R4 ( $>e# kH ’, $# $ 3K3? (6 ,8
.(\) ?9 72 ? A (” 8 ( 6 B2. 3% (a ’
A 4 43 4<NK C3&’3# ( ) A <K6 / $2″!9
[/\]43 430, s R# (a ’ $ 8 2<6 C /
.,K’ A,>
4# 49 G3’ s R# 3 (a ’ $8 (Z) ,#
A 4? 49 9 Y[I430 oQd# C .,K’ 7/%d# Y /Y ”
( 48 ( 43’ :24% 46 B2.3%C (a ’ $8
.,K’ 8l n I9J (a ’ P/># A,> 79
x05 (a ’ L,Om# (a ’ (a ’ ( !9 AR3#
43 430, s R4# (a 4’ ( !9 .% #H Z+ X
4% 749 /.4’ 748 #H %79[/Z ( ,U A% 5 A2%
“&$5 ’”% ’ ’<% ! “a ’ ’<% ! G=”4 .5 “a G=”4 .5 X 0 ! .N ’H (2<6/+ a&#) (a ’ I<?
Form of energy (MJ ha-1) 3
onion a b
%a bB3Q2.# (a ’
Direct energyb 71979 73.1 cB3Q2.# 3= (a ’
Indirect energyc 26501 26.9 d n I9J (a ’
Renewable energyd 22361 22.7 e n I9J 3= (a ’
Non-renewable energye 76119 77.3 ( (a ’ I8
Total energy input 98479 100 a: Indicates percentage of total energy input. .( (a ’ I8 b . / :a b: Includes human labor, diesel, water, electricity. .723. 2<0 ( 39H SH I3E 5,% $’.’ ( 3’ . / :b c: Includes machinery, fertilizers, manure, chemicals, seeds. .$ O# 9 f,K% $# ,8 $ 3K3? (6 ,8 1_H C3?# . / :c d: Includes human labor, manure, water, seeds. .$ O# 9 ( 39H SH $# ,8 $’.’ ( 3’ . / :d e: Includes machinery, diesel, fertilizers, chemicals, electricity. .723. 2<0 f,K% $ 3K3? (6 ,8 I3E 5,% 1_H C3?# . / :e

(4674>R6 B 30, (6 7>R6 I8 72 c R +,Od#
46,5 c R 7>R6 79 /.’ 9 c68 3r2# 9k
.
749 ,49 # 430, (46 74>R6 I48 % $% 9 C
749 ,49 # 430, (46 74>R6 I48 %\ 43r2# (6 7>R6
49 49 9 3 30, x05 (,%) ” 9 .,9 9k (6 7>R6
43 +,O4d# 430, 6 $#A”’ 78 ,9 + Y Z\ [Y
. ?9 $# ( O2J 73X, ( 7QW>#
“M0<”
( 4 $ 48 4d9 $4K!# s,4U,# (a 4’ #
430, ( 9 ( (a ’ I8 . % (a ’ ( O2J :2% ,49 / AH (a ’ $ 8 + a&# \Z 3 2<6 G
i O# I30 79 3 +,Od# 30, (a ’ $ 8 C 9>9
5,4% $# ,8 ( 39H SH $ 3K3? (6 ,8 723. 2<0 V3d4b 4# 49 24% C34K6 .,49 C3 I3E
A,4 $4# B2.43% 749 (a 4’ (46 4!’ i O# c68 !X 723.4 2<0 3 +,Od# 30, . c R (a ’ $ 8 LO425 ,45 749 ( (a ’ i O# B!% C 2″39 A24% p4N2m# oh4># “48 (,4&0 797X, 9 723. 2<0
A463 74 r C3>@ B6 #H 8 ( 39H (6 B2.3% :2%
( 430, (46 ,8+4T# A,> 79 n (a ’ P9># ^%,
4 n (a 4’ P9># /.’ R/% ,8( 7 R# A
. 6 $# c R 3 30,
“& ’” % !”#$% 430, 74>R6 I8 + [ Z ] 3 30, x05’
/]Y 3 +,Od# 30, 7>R6 79 /.’ ] [\
% 7 >R6 7 9 /.’ .(]+ X) #H % 7 9
/.’+T# A,> 79 ,9 79″# A $ 1_,Od#
1 l (\) //Y]M43 79$9H B f > 7>R6 79
/Y\(74’mN 35 () /\\$>3# M3% () /Y
748 4#H 4% 749 ( ) /\ ( 74’mN $4&’ 7X, ( ) ( 430, (6 !’78 $_,Od# 30, 7n32’ A, $# 4 ( 74’mN 1_,O4d# 4>’# ’ ( 2″39+ 2>8 3N9J
1_,O4d# I43/J % C3 30, (6 7>R6 78$_,Od# $N#,4 4 $N8 ,h79 . % 2″39 7>R6 79 /.’ B
4 K3J <NK I3/J ’,?$# ,% c R M/% 78
\
“& ’”% !”#$% ._ ’H
” 9 7>R6 RX
Cost and return components
Value
(2<6/f ,N38) <NK
Yield (kg ha-1) 73227
(f ,N38/+ ) K3J
Sale price (rial kg-1) 1785
(2<6/+ ) 30, x05’
Gross value of production (rial ha-1) 130743967
(2<6/+ ) 30, 3r2# 7>R6
(rial ha-1) Variable cost of production 57390181
(2<6/+ ) 30, 9k 7>R6
(rial ha-1) Fixed cost of production 21872727
(2<6/+ ) 30, 7>R6 I8
Total cost of production (rial ha-1) 79262908
(f ,N38/+ ) 30, 7>R6 I8
Total cost of production (rial kg-1) 1082
(2<6/+ ) x05’ ” 9
Gross return (rial ha-1) 73353786
(2<6/+ ) x05 ” 9
Net return (rial ha-1) 51481059
7>R679 /.’
Benefit to cost ratio 1.65
2″439 4 n I49J 3= (46 (a 4’ i O4# .,49 ($ O# I48 b / . J f 7/ Aa 23’ ,8 x045 ” 9 #H %79 n I9J (6 (a ’ i O# I3E 5,% $’.’ ( 3’) B3Q2.# (a ’ ( (a ’
.,9 + Y Z\ [Y 3 2<6 G 30, B3Q2.4# 3= (a 4’ AH b ]/ (723. 2<0 ( 39H SH 9 f,K % $ # , 8 $ 3K3 ? ( 6 ,8 1_H C3 ?#)
9 5 : ;5
Alamzadeh Ansari, N. and R. Mamghani. 2008. Effect of screening of onion (Allium cepa) ecotypes of southern Iran on bulb yield and bolting. Asian Journal of Plant Sciences 7(6): 584–588.
Beheshti Tabar, I., A. Keyhani and S. Rafiee. 2010. Energy balance in Iran’s agronomy (1990–2006). Renewable and Sustainable Energy Reviews 14: 849–855.
Demircan, V., K. Ekinci, H. M. Keener, D. Akbolat and C. Ekinci. 2006. Energy and economic analysis of sweet cherry production in Turkey: a case study from Isparta province. Energy Conversion and Management 47: 1761–1769.
Erdal, G., K. Esengun, H. Erdal and O.Gunduz. 2007. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy 32: 35–41.
Esengun, K., O. Gunduz and G. Erdal. 2007. Input–output energy analysis in dry apricot production of Turkey. Energy Conversion and Management 48: 592–598.
FAO, (Annual) Production Yearbook. 2011. Food and Agriculture Organization. United Nations, Rome.
Ghasemi Mobtaker, H., A. Keyhani, A. Mohammadi, S. Rafiee and A. Akram. 2010. Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran. Agriculture, Ecosystems and Environment 137: 367–372.
Ghorbani, R., F. Mondani, S. Amirmoradi, H. Feizi, S. Khorramdel, M.Teimouri, S. Sanjani, S. Anvarkhah and H. Aghel. 2011. A case study of energy use and economical analysis of irrigated and dryland wheat production systems. Applied Energy 88: 283–288.
Heidari, M.D. and M. Omid. 2011. Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy 36: 220–225.
Kizilaslan, H. 2009. Input–output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy 86: 1354–1358.
Mohammadi, A. and M.Omid. 2010. Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy 87: 191–196.
Mohammadi, A., S. Rafiee, S.S. Mohtasebi and H. Rafiee. 2010. Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran. Renewable Energy 35: 1071–1075.
Mohammadi, A., A. Tabatabaeefar, S. Shahin, S. Rafiee and A. Keyhani. 2008. Energy use and economical analysis of potato production in Iran a case study: Ardabil province. Energy Conversion and Management 49: 3566–3570.
Moore, S.R. 2010. Energy efficiency in small-scale biointensive organic onion production in Pennsylvania, USA. Renewable Agriculture and Food Systems 25(3): 181–188.
Mousavi-Avval, S.H., S. Rafiee, A. Jafari and A. Mohammadi. 2011. Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach. Energy 36: 2765–2772.
Mousavi-Avval, S.H., S. Rafiee, A. Jafari and A. Mohammadi. 2011. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Applied Energy 88(11): 3765–3772.
Mousavi-Avval, S.H., S. Rafiee and A. Mohammadi. 2011. Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis. Energy 36: 909–916.
Ozkan, B., H. Akcaoz and C. Fert. 2004. Energy input–output analysis in Turkish Agriculture. Renewable Energy 29: 39–51.
Pishgar Komleh, S.H., A. Keyhani, S. Rafiee and P. Sefeedpary. 2011. Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran. Energy 36: 3335–3341.
Singh, G., S. Singh and J. Singh. 2004. Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management 45: 453–465.
Van Wyk, B.E. and M.Wink. 2004. Medicinal Plants of The World: an illustrated scientific guide to important medicinal plants and their uses. Timber Press, Portland, Oregon.
Yilmaz, I., H. Akcaoz and B.Ozkan. 2005. An analysis of energy use and input costs for cotton production in Turkey. Renewable Energy 30: 145–155.
[



قیمت: تومان


پاسخ دهید